Distance-2 Edge Coloring is NP-Complete

نویسندگان

  • Jeff Erickson
  • Shripad Thite
  • David P. Bunde
چکیده

Let G be a simple, undirected graph. We say that two edges of G are within distance 2 of each other if either they are adjacent or there is some other edge that is adjacent to both of them. A distance-2-edge-coloring of G is an assignment of colors to edges so that any two edges within distance 2 of each other have distinct colors, or equivalently, a vertex-coloring of the square of the line graph of G. If the coloring uses only k colors, it is called a k-D2-edge-coloring, and the graph G is said to be k-D2-edge-colorable. Any k-D2-edge-colorable graph is also (k + 1)-D2-edge-colorable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The complexity of nonrepetitive edge coloring of graphs

A squarefree word is a sequence w of symbols such that there are no strings x, y, and z for which w = xyyz. A nonrepetitive coloring of a graph is an edge coloring in which the sequence of colors along any open path is squarefree. We show that determining whether a graph G has a nonrepetitive k-coloring is Σ p 2 -complete. When we restrict to paths of lengths at most n, the problem becomes NP-c...

متن کامل

The NP-Completeness of Edge-Coloring

We show that it is NP-complete to determine the chromatic index of an arbitrary graph. The problem remains NP-complete even for cubic graphs.

متن کامل

On the computational complexity of strong edge coloring

In the strong edge coloring problem, the objective is to color the edges of the given graph with the minimum number of colors so that every color class is an induced matching. In this paper, we will prove that this problem is NP-complete even in a very restricted setting. Also, a closely related problem, namely the maximum antimatching problem, is studied, and some NP-completeness results and a...

متن کامل

The NP-completeness of authomorphic colorings

Given a graph G, an automorphic edge(vertex)-coloring of G is a proper edge(vertex)-coloring such that each automorphism of the graph preserves the coloring. The automorphic chromatic index (number) is the least integer k for which G admits an automorphic edge(vertex)coloring with k colors. We show that it is NP-complete to determine the automorphic chromatic index and the automorphic chromatic...

متن کامل

Note on the complexity of deciding the rainbow connectedness for bipartite graphs

A path in an edge-colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge-colored graph is (strongly) rainbow connected if there exists a rainbow (geodesic) path between every pair of vertices. The (strong) rainbow connection number of G, denoted by (scr(G), respectively) rc(G), is the smallest number of colors that are needed in order to make G (stro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/cs/0509100  شماره 

صفحات  -

تاریخ انتشار 2005